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Abstract

An analytical formulation of a transfer function pertaining to a simple structural model is used both to
examine the result of replacing a summation by an integration and to interpret this result. The model
consists of a coated plate immersed in fluid media on either side. The first fluid interfaces the coating atop
and is semi-infinite in extent. The second fluid interfaces the bottom of the plate and terminates at a baffle
that defines a reflection coefficient. An external drive is placed on a plane that lies in the fluid between the
plate and the baffle. Focus is centered on the transfer function between a spectral component in the external
drive and a spectral component on the interface with the top fluid. The presence of the baffle generates
resonances and anti-resonances in this transfer function. These are discernible in those regions of the
frequency domain in which the modal overlap parameters are less than unity. In those regions of the
frequency domain in which the modal overlap parameters approach and exceed unity the resonances and
the anti-resonances merge into values that are the same as those in the absence of the cavity. It transpires
that replacing a summation by an integration is tantamount to artificially merging the resonances and the
anti-resonances also in those regions in which the modal overlap parameters are less than unity. The
merging, again, are into values that are the same as those in the absence of the cavity. It follows then that in
those regions of the frequency domain where resonances and anti-resonances are present under
summations, these resonances and anti-resonances are suppressed when the summations are replaced by
integrations.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

An estimate of the response of a resonant complex dynamic system carries terms and factors
that involve summations that generate the resonances and the anti-resonances. Approximations
for the estimate are often made by converting the summations to corresponding integrations [1–6].
One might ask: What is the criterion that legitimizes this conversion? An answer to this question is
briefly sought and exemplified in this paper.
In Section 2, the complex dynamic system having transfer functions in which resonances and

anti-resonances are manifested, is described and defined. The formalism focuses on the transfer of
spectral components in the external drive to spectral components that emerge on the interface of a
coated plate with the top fluid (cf. Fig. 1). The top fluid occupies the semi-infinite space above that
interface. The external drive is placed on a plane parallel to the plate in the bottom fluid a specific
distance below the plate. Since there are no discontinuities, either in the plate or in the coating and
since these elements of the structure are assumed to be isotropic, the transfer is one-to-one. A
spectral component in the external drive is spectrally duplicated in the component that emerges on
the interface with the top fluid. The spectral component that is selected for investigation in this
paper is supersonic. To render in this transfer function resonances and anti-resonances a baffle is
placed in the bottom fluid on a parallel plane to the plate. The baffle is uniform and it lies below
the plane in which the external drive resides. Assisted by Fig. 1, the analytical expressions for the
transfer function are derived. Fig. 1a depicts the elements of the model. The physical construction
of the model is shown in Fig. 1b. An equivalent circuit diagram of the model is presented in
Fig. 1c. A brief synopsis of the analysis, as deduced from Fig. 1c, is given in Table 1. The transfer
function ðTbcÞ, in the presence of both the cavity and the coating, is derived first. The presence of
the cavity is designated by the subscript ðbÞ and that of the coating by the subscript ðcÞ. The
reductions in the expression for the transfer function ðTbcÞ to ðTcÞ when the cavity is removed, to
ðTbÞ when the coating is removed and to ðTÞ when the cavity as well as the coating are removed,
are derived successively.
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Fig. 1. (a) Elements of the model; (b) physical construction of the model; (c) equivalent circuit diagram for the model.
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Table 1

A brief synopsis of the analysis of the model depicted in Fig. 1

ZbV ¼ Pb
e

V ¼ fV1;V2g

Pb
e ¼ fO;P

b
eg

Pb
e ¼ fC;Peg

Zb ¼
ðZf 1 þ ZcÞ �Zc

�Zc ðZc þ Zp þ Zb
f 2Þ

 !

Zb
f 2 ¼ ðZf 2AÞ

Pf 1 ¼ ðZf 1V1Þ
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In Section 3, computations pertaining to the transfer functions ðTbcÞ; ðTcÞ; ðTbÞ and ðTÞ, as
functions of an appropriately normalized frequency, are carried out. As expected, resonances and
anti-resonances are found only in the results of computations involving ðTbcÞ and ðTbÞ for these
are the only transfer functions governed by the presence of the cavity. Again, as expected, the
results of computations involving ðTcÞ and ðTÞ, for which the cavity is absent, are devoid of
resonances and anti-resonances. In this paper the results of the computations are presented in a
set of three graphs. In the first graph the modulus of ðTbcÞ is depicted by a solid curve and the
modulus of ðTcÞ is depicted by a dotted curve; e.g., in Fig. 2a. In the second graph the modulus of
ðTbÞ is depicted by a solid curve and the modulus of ðTÞ is depicted by a dotted curve; e.g., in Fig.
2b. Each of these two graphs contrast the transfer function in the presence of the cavity (solid
curves) with the corresponding transfer function in the absence of the cavity (dotted curves). In
the third graph the modulus of ðTbc=TbÞ is depicted by a solid curve and the modulus of ðTc=TÞ is
depicted by a dotted curve; e.g., in Fig. 2c. This third graph exhibits and contrasts the influence of
the coating on the transfer function in the presence of the cavity (solid curve) with the transfer
function in the absence of the cavity (dotted curve). The influence on the transfer functions of
damping in the cavity is also computed and investigated. Both, the volume (bulk) damping and the
damping resulting from the absorption in the surface of the baffle, are considered.
Most previous works on this subject focused on deriving an induced loss factor resulting from

the coupling of a master dynamic system; e.g., a harmonic oscillator, to an adjunct dynamic system;
e.g., a set of harmonic oscillators [1–6]. The induced loss factor is the apparent increase in the loss
factor that is experienced by the master dynamic system due to this coupling [1–8]. In this paper
the damping is defined in terms of modal overlap parameters rather than merely in terms of loss
factors. In particular, the focus is on the property that in a region in the frequency domain in
which resonances and anti-resonances prevail, the modal overlap parameter is less than unity,
whereas in a region of the frequency domain that is characterized by a modal overlap parameter
that exceeds unity, the resonances and anti-resonances are suppressed [9,10]. The suppression is a
convergence of peaks in the resonances and of nadirs in the anti-resonances onto values that are
commensurate with modal overlap parameters that exceed unity. Thus, although the modal
overlap parameter is equal to the product of the frequency, the loss factor and the modal density,
in the consideration of the replacement of a summation by an integration the individual values of
these constituent factors is moot. The value of their product, which is the modal overlap
parameter, plays the only significant role [9,10].
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Fig. 2. (a) The transfer function, as a function of the normalized frequency ðoÞ, for standard coated plate under the

standard condition jRðoÞj ¼ expð�10�3Þ, Z ¼ 10�2, Zc ¼ 10�2, s ¼ 1 ðocÞ ¼ 10, ðbÞ ¼ p, ðb1Þ ¼ 0, ðkÞ ¼ 0, fluid loading

factor g ¼ ðr1c1=oo mocÞ ¼ 0:13 and the fluids on both sides, fluid no. 1 and fluid no. 2, possess equal properties; i.e.,

r1 ¼ r2 and c1 ¼ c2. Note that frequencies and time scales are normalized by ðooÞ and wavenumbers and spatial

separations are normalized by ðoo=c1Þ. (b) As in Fig. 2(a) except that the plate is uncoated. (c) The ratio of the transfer

functions, as a function of the normalized frequency ðoÞ. The ratio is between the coated and uncoated plates; i.e., Fig.

2(a) divided by Fig. 2(b).
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In Section 4, summations in the expressions for the transfer functions, under several varying
conditions of damping, are converted to corresponding integrations. The results of computations
show that the resonances and the anti-resonances, that exist when the summations prevail, are
suppressed when these summations are converted to the corresponding integrations. It is
interpreted that in those regions of the frequency domain in which the modal overlap parameters
are less than unity, the conversion of the summations to integrations is tantamount to inducing
artificially these modal overlap parameters to exceed unity. One recalls that in a region where the
modal overlap parameters are less than unity, the footprints of the resonances and the anti-
resonances are clearly discernible. Thus, the conversion of the summations to the corresponding
integrations suppresses the modal character of the transfer functions investigated here. The
suppression is such as to validate the ‘‘mean-value method’’ proposed by Skudrzyk [11].



ARTICLE IN PRESS

G. Maidanik et al. / Journal of Sound and Vibration 291 (2006) 323–348 327
Finally, a number of variations on the theme are covered in Appendix B. These are presented
under a separate cover in order not to clutter the main theme of the paper. That theme is to
decipher the procedures and the meanings that encompass the conversion of summations to
integrations in structural acoustics. It is hoped that this limited theme is adequately illustrated and
that the arguments are convincing enough.
2. Derivation of the expressions for the transfer function

The derivation is performed on the dynamic system shown in Fig. 1. This dynamic system is
composed basically of a plate immersed, on each side, by a fluid; fluid no. 1 atop and fluid no. 2
below. The plate is backed by a baffle. The baffle is uniform and is placed on a plane a normalized
distance ðbÞ below the plate; b ¼ ðb1 þ b2Þ; ðb1ÞoðbÞ. The normalized distances ðb1Þ and ðb2Þ are
yet to be defined. All distances; e.g., b; b1 and b2, are normalized by ðc1=ooÞ, where ðc1Þ is the speed
of sound in the top fluid (fluid no. 1) and ðooÞ is the resonance frequency of the oscillator formed
by the surface stiffness ðKcÞ of the coating, and the surface mass ðmÞ of the plate; ðooÞ

2
¼ ðKc=mÞ.

In this paper ðooÞ is used as a normalizing factor for all other frequencies; e.g., ðoÞ designates the
so normalized frequency variable. Also in this paper all wavenumbers are normalized by the
factor ðoo=c1Þ; e.g., ðkÞ designates the so normalized wavenumber variable. A thin slab of
compliant coating is attached to the top side of the plate, the other side of the coating interfaces
the fluid atop (fluid no. 1) as depicted in Figs. 1a and b. A set of external drives are distributed on
a plane a normalized distance ðb1Þ below the plane of the plate and a normalized distance ðb2Þ

above the baffle as indicated in Fig. 1a. The transfer function Tbcðk;oÞ, relating the spectral
component Peðk;oÞ, in the external drive, to the spectral component Pf 1 ðk;oÞ, in the pressure on
the interface with the semi-infinite fluid atop (fluid no. 1), is of special interest in this paper. [The
subscript ð f 1Þ ; i.e., as in ðPf 1Þ, indicates that this quantity is ascertained in fluid no. 1.] The
normalized vector fk;og is a spectral variable, where ðkÞ is the normalized wavevector in the plane
of the plate and ðoÞ is the normalized frequency. The analytical derivation of this transfer function
is assisted by Fig. 1c and Table 1. In this vein one may derive the transfer function Tbcðk;oÞ in the
form

Tbcðk;oÞ ¼ ½Pf 1ðk;oÞ=Peðk;oÞ�; Pf 1ðk;oÞ ¼ ½Zf 1ðk;oÞV1ðk;oÞ�,

Tbcðk;oÞ ¼ Zðk;oÞGðk;oÞCðk;oÞ, (1a)

where V1 ðk;oÞ is the response of the interface of the coating with fluid no. 1, Zðk;oÞ is a parallel
combination of the fluid surface impedance Zf 1ðk;oÞ and the surface (stiffness) impedance
Zcðk;oÞ of the coating; namely

Zðk;oÞ ¼ Zf 1ðk;oÞZcðk;oÞ½Zf 1ðk;oÞ þ Zcðk;oÞ��1 (2)

and G ðk;oÞ is the surface admittance of the plate in situ

Gðk;oÞ ¼ ½Zðk;oÞ þ Zpðk;oÞ þ Zb
f 2ðk;oÞ�

�1. (3)

In Eqs. (1a), (2) and (3) the surface impedances are all normalized. The normalizing factor here is
the imaginary part of the surface mass impedance; i.e., ½ðmooÞðoÞ�, of the plate. Thus, for example,
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the normalization of the surface impedance of the coating is

Zcðk;oÞ ¼ ZcðoÞ ¼ �i½Kcð1þ iZcÞ=ðmo2
oÞðoÞ

2
� ¼ �iðoÞ�2ð1þ iZcÞ,

o2
o ¼ ðKc=mÞ (4)

and the normalization of the surface impedance of the top fluid (fluid no. 1) is

Zf 1ðk;oÞ ¼ Zf 1ðk;oÞ ¼ g1ðoc=oÞ½k1ðk;oÞ��1; g1 ¼ ðr1c1=ooocmÞ

k1ðk;oÞ ¼ ð1� a21Þ
1=2Uð1� a21Þ � iða21 � 1Þ1=2Uða21 � 1Þ,

a21 ¼ ðk=oÞ
2; jkj ¼ k, (5a)

where ðUÞ is the standard step function, ðr1c1Þ is the characteristic impedance of fluid no. 1 and
ðocÞ is the normalized critical frequency of the plate with respect to the top fluid (fluid no. 1). In
this paper Kc is simply assumed to be a constant independent of ðkÞ and ðoÞ. The normalized
wavenumber k1ðk;oÞ is the viable wavenumber in the top fluid (fluid no. 1) that describes, in that
fluid, the propagation normal to the plane of the plate. As indicated in Eq. (5a) this wavenumber
is dependent merely on ðkÞ not on ðkÞ and, therefore, so is the normalized surface fluid impedance.
The normalized fluid loading on the plate, due to the bottom fluid (fluid no. 2), is modified by the
presence of the cavity in the manner

Zb
f 2ðk;oÞ ¼ Zb

f 2ðk;oÞ ¼ Aðk;oÞZf 2ðk;oÞ, (6)

where Zf 2ðk;oÞ is the normalized surface impedance of the bottom fluid in the absence of the
cavity; namely

Zf 2ðk;oÞ ¼ Zf 2ðk;oÞ ¼ g2ðoc=oÞ½k2ðk;oÞ��1; g2 ¼ ðr2c2=ooocmÞ,

k2ðk;oÞ ¼ ð1� a22Þ
1=2Uð1� a22Þ � iða22 � 1Þ1=2Uða22 � 1Þ,

a22 ¼ ðc2=c1Þ
2a21; jkj ¼ k. (5b)

In Eq. (5b) ðr2c2Þ is the characteristic impedance of fluid no. 2 and k2ðk;oÞ is the normalized
viable wavenumber that describes the propagation normal to the plane of the plate in the bottom
fluid (fluid no. 2) [cf. Eq. (5b)]. The dimensionless factor Aðk;oÞ accounts for the modification, by
the presence of the cavity, to the surface impedance of the bottom fluid (fluid no. 2). The
expression for this factor may be derived by tracing the multiple reflections at the blocked plate
and the surface of the cavity. The result is

Zb
f 2ðk;oÞ ¼ Zf 2ðk;oÞAðk;oÞ; Aðk;oÞ ¼ Aðk;oÞ,

Aðk;oÞ ¼ ½1þ RðoÞ expfaðk;oÞg�½1� RðoÞ expfaðk;oÞg��1,

aðk;oÞ ¼ f�2iðc1=c2ÞðboÞk2ðk;oÞgð1� iZÞ, (7a)

where ðZÞ is the volume loss factor in the cavity, aðk;oÞ is the argument of the propagator in the
bottom fluid from the plane of the plate to the surface of the baffle and back again, and RðoÞ is
the reflection coefficient on the surface of this baffle. Again, the reflection coefficient is assumed,
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for simplicity sake, to be independent of the wavevector ðkÞ. There remains to define just another
dimensionless factor; the Cðk;oÞ in Eq. (1). This dimensionless factor accounts for the
modification to the external drive by the presence of the cavity. This factor accounts for any off-
set of the external drive from the plane of the cavity before the multiple reflections in the cavity
commence. This factor may be expressed in the form

Pb
eðk;oÞ ¼ Cðk;oÞPeðk;oÞ,

Cðk;oÞ ¼ ½1þ ð�1ÞSRðoÞ expfa1ðk;oÞg�½1� RðoÞ expfaðk;oÞg��1,

a1ðk;oÞ ¼ f�2iðc1=c2Þ½oðb� b1Þ�k2ðk;oÞgð1� iZÞ, (7b)

where a1 ) a as b1 ) 0 and the index ðsÞ designates the nature of the external drives; e.g., s ¼ 0
designates a monopole-like and s ¼ 1 designates a dipole-like external drive, [cf. Eq. (7a)]. Since
there are no spatial-temporal discontinuities in the elements that compose the complex dynamic
system, a spectral component in the external drive is spectrally duplicated in the component that
emerges on the interface with the top fluid. This condition renders the normalized wavevector ðkÞ
a function of the normalized frequency; namely, k ¼ kðoÞ. Moreover, if the spectral component
that one seeks on the interface with the top fluid is to be supersonic, then jkðoÞj ¼ kðoÞoo. These
conditions are incorporated in the formalism in this paper. In particular

kðoÞ ¼ ðoÞ sinðyÞ, (8)

where the angle ðyÞ is the directional designation of a (supersonic) component on the interface
with the top fluid (fluid no. 1). Finally, the normalized surface impedance of the plate is expressed
in the form

Zpðk;oÞ ¼ i½ð1� iZmÞ � ðk
2=oocÞ

2
ð1þ iZpÞ�, (9)

where the plate is assumed to be isotropic and ðZmÞ and ðZpÞ are, respectively, the mass-control and
the stiffness-control loss factors in the plate and one is reminded, yet again, that ðkÞ, ðocÞ and ðoÞ
are the normalized wavenumber, the normalized critical frequency and the normalized frequency,
respectively. The normalizing factors are ðoo=c1Þ, ðooÞ and ðooÞ, respectively. Under all these
assumptions and definitions, the transfer function Tbcðk;oÞ is, in fact, isotropic

Tbcðk;oÞ ) Tbcðk;oÞ; k ¼ kðoÞ (1b)

as can be readily verified reviewing Eqs. (1)–(9). A few asymptotic forms for Eq. (1) are useful.
These are: The coating is removed by rendering jZcj infinite; jZcj ) 1. In the absence of coating,
Eq. (1) yields the transfer function Tbðk;oÞ as

Tbðk;oÞ ¼ Zf 1ðk;oÞGðk;oÞCðk;oÞ; jZcj ) 1, (10)

where the subscript ðcÞ for the presence of the coating is removed and Gðk;oÞ is reduced to

Gðk;oÞ ) ½Zf 1ðk;oÞ þ Zpðk;oÞ þ Zb
f 2ðk;oÞ�

�1 (11)

[cf. Eqs. (2)–(9)]. The baffle may be removed by rendering the reflection coefficient RðoÞ, at the
baffle interface with the bottom fluid (fluid no. 2), equal to zero; i.e., RðoÞ ) 0. This removal
renders Aðk;oÞ and Bðk;oÞ equal to unity. In the absence of the cavity; i.e., when RðoÞ ) 0,
but in the presence of the coating; i.e., when jZcjðoÞR1, the transfer function Tbcðk;oÞ stated in
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Eq. (1) reduces to

Tcðk;oÞ ¼ Zðk;oÞGðk;oÞ; RðoÞ ) 0; but jZcjR1, (12)

where the subscript ðbÞ for the presence of the cavity is removed and Zb
f 2ðk;oÞAðk;oÞ and Cðk;oÞ

are reduced to

Zb
f 2ðk;oÞ ) Zf 2ðk;oÞ; Aðk;oÞ ¼ 1; Cðk;oÞ ) 1, (13)

respectively, and the normalized admittance Gðk;oÞ is reduced to

Gðk;oÞ ¼ ½Zðk;oÞ þ Zpðk;oÞ þ Zf 2ðk;oÞ��1 (14)

[cf. Eqs. (2)–(9)]. If, in addition to the removal of the cavity, the coating is also removed; i.e.,
jZcj ) 1, then the transfer function Tcðk;oÞ further reduces from Eq. (12) to be

Tðk;oÞ ¼ Zf 1ðk;oÞGðk;oÞ; RðoÞ ) 0 and jZcj ) 1, (15)

where, the subscript ðcÞ for the presence of the coating is removed by definition and Gðk;oÞ
assumes the reduced form

Gðk;oÞ ) ½Zf 1ðk;oÞ þ Zpðk;oÞ þ Zf 2ðk;oÞ��1 (16)

[cf. Eqs. (2)–(9)]. One can define a simple coating such that ðKcÞ and ðZcÞ are constants,
independent of the normalized frequency. Eqs. (1), (10), (12) and (15) can then be employed to
compute the three pairs of quantities: fTbcðk;oÞ;Tcðk;oÞg; fTbðk;oÞ;Tðk;oÞg and
fjTbcðk;oÞ=Tbðk;oÞj; jTcðk;oÞ=Tðk;oÞjg, as functions of the normalized frequency ðoÞ. In these
computations k ¼ ðoÞ sinðyÞ.
3. The presence of resonances

The standard computations are presented in Fig. 2. These computations are carried out with the
standard parametric values: ðZÞ ¼ ð10�2Þ, ðZcÞ ¼ ð10

�2Þ, ðZmÞ ¼ ð10
�2Þ, ðZp ¼ ð10

�2Þ, ðocÞ ¼ ð10Þ,
ðkÞ ¼ ð0Þ, ðb1Þ ¼ ð0Þ and ðbÞ ¼ ðpÞ, in place. Also when the standard baffle is present, the modulus
of the reflection coefficient jRðoÞj is largely equal to unity, implying, thereby, that the absorption
in the surface of the baffle is negligible. On the other hand, the standard removal of the baffle is
accomplished by rendering the modulus of the reflection coefficient jRðoÞj negligible, implying,
thereby, that the absorption in the surface of the baffle is total. Imposing these standard values
Fig. 2 is obtained. Fig. 2 exhibits the following quantities:
Fig. 2a depicts jTbcðo;oÞj in the solid curve and jTcðo;oÞj in the dotted curve, Fig. 2b depicts
jTbðo;oÞj in the solid curve and jTð0;oÞj in the dotted curve, Fig. 2c depicts jTbcðo;oÞ=Tbðo;oÞj in
the solid curve and jTcðo;oÞ=T ðo;oÞj in the dotted curve.
The footprints of the cavity are clearly demonstrated in both, Fig. 2a in the presence of the

coating and Fig. 2b in the absence of the coating. The influence of the coating is accentuated in
Fig. 2c where the ratio of the transfer functions in the presence of the coating to those in the
absence of the coating are depicted;i.e., the curves in Fig. 2a are divided by those in Fig. 2b to
obtain Fig. 2c. Evidently, the resonances and the anti-resonances that the cavity generates
dominate the scenes in Fig. 2. Also clearly, the resonances and anti-resonances are absent in the
absence of the baffle and, therefore, in the absence of the cavity. [The absence of the cavity may be
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achieved by rendering ðbÞ infinite;i.e., the baffle is removed onto a plane an infinite normalized
distance below the plate. One recalls that in this paper distances are normalized by ðc1=ooÞ. The
transition from a finite normalized spatial extent, in which resonances and anti-resonances are
generated, to the semi-infinite normalized spatial extent in which resonances and anti-resonances
are absent is thus demonstrated [8].] Figs. 3–5 repeat Fig. 2 except that the loss factor ðZÞ in the
cavity is increased from the standard value of ð10�2Þ in Fig. 2 to ð10�1Þ in Fig. 3 and to ð3� 10�1Þ
in Fig. 4 and, finally, to ð5� 10�1Þ in Fig. 5. Figs. 3–5 show that the resonances and the anti-
resonances are suppressed more and more by these successive increases in damping.However, the
phenomenon of suppressed resonances and anti-resonances is not missing in Fig. 2. The
suppression in Fig. 2 occurs merely at a higher frequency range than in Fig. 3. To explain this
phenomenon one recalls that the degree of damping is not sufficiently stated by merely specifying
the loss factor [2,9,10]. One must also specify the normalized frequency separation ðDoÞ between
adjacent resonances. A modal overlap parameter ðBÞ may then be defined formally as

BðoÞ ¼ ðoZe=DoÞ ¼ ðoZeÞn; Do ¼ ½n��1; n ¼ nðoÞ; Ze ¼ ZeðoÞ, (17a)

where nðoÞ is the local (normalized) modal density and ZeðoÞ is the corresponding local effective
loss factor in the dynamic system. [It is recalled that ðoZeÞ is the normalized frequency bandwidth
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Fig. 3. The same as Fig. 2 except that ðZÞ is changed from the standard value of ð10�2Þ–ð10�1Þ.



ARTICLE IN PRESS

10

1

0.1

0.01

1x10-3

0.1 1 10 100

|T
bc

(k
(ω

),
 ω

)|
|T

c(
k(

ω
),

 ω
)|

. .
 . 

.

ω(a)

10

1

0.1

0.01

1x10-3

0.1 1 10 100

|T
b(

k(
ω

),
 ω

)|
|T

(k
(ω

),
 ω

)|
. .

 . 
.

ω(b)

10

1

0.1

0.01

1x10-3

0.1 1 10 100

|T
bc

_T
b(

k(
ω

),
 ω

)|
|T

c_
T

(k
(ω

),
 ω

)|
. .

 . 
.

ω(c)

Fig. 4. The same as Fig. 2 except that ðZÞ is changed from the standard value of ð10�2Þ–ð3� 10�1Þ.
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of a local resonance or a local anti-resonance.] The degree of damping is then defined in terms of
ðBÞ in the form

B ¼

51 light damping;

ffi 1 mid-damping;

b1 high damping:

8><
>: (18a,b,c)

In the frequency locality where the local ðBÞ is less than unity, resonances and anti-resonances
dominate the scene. In the frequency locality where the local ðBÞ approaches unity, resonances and
anti-resonances approach indistinguishability. Finally, in the frequency locality where the local
ðBÞ exceeds unity, resonances and anti-resonances are suppressed. In Fig. 2 in the presence of the
cavity the modulus of the reflection coefficient jRðoÞj is conditioned to be substantially equal to
unity throughout the normalized frequency range of interest here; namely, 0:1ooo102. Thus, in
this figure, the modal overlap parameter BðoÞ is dominated by the volume (bulk) loss factor ðZÞ.
This BðoÞ is given by

BðoÞ ) BoðoÞ ¼ ðoZÞn; k ¼ o sinðyÞ ¼ 0 (17b)
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[cf. Appendices A and B]. In Fig. 2, both the loss factor ðZÞ and the normalized modal density ðnÞ
are assumed to be independent of ðoÞ so that the modal overlap parameter BoðoÞ is simply
proportional to ðoÞ. This simple proportionality explains the gradual suppression of the
resonances and the anti-resonances as the normalized frequency ðoÞ increases. In fact, as the
normalized frequency increases to render ðBoÞ in excess of unity, the suppression is complete. This
phenomenon is, exhibited in Fig. 2. The successive increases in ðZÞ, depicted in Figs. 3–5, introduce
suppressions of the resonances and the anti-resonances similar to those exhibited in Fig. 2.
However, compared with Fig. 2, the suppressions in Figs. 3–5 suffer proportional shifts to lower
and lower frequencies along the normalized frequency axis as ðZÞ increases successively. The
suppressions are shifted successively to the lower and lower normalized frequency range. [In
Appendix A it is shown that n ¼ 1 in Figs. 2–5 and, therefore, the modal overlap parameters in
these figures are, governed merely by BoðoÞ ¼ ðoZÞ.] A rough estimate in Figs. 2–5 would convince
one that Eqs. (17) and (18) in the text and Eqs. (A.1)–(A.8) in Appendix A appear to be validated.
In addition to confirming these equations, it appears in Figs. 2–5 that in those regions of the
normalized frequency domain where the local modal overlap parameter ðBoÞ exceeds unity,
the solid curve locally coalesces with the dotted curve. It is recalled that the solid curve pertains to
the presence of the cavity and the dotted curve pertains to the absence of the cavity. This local
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coalescence of the two curves, exemplifies ‘‘The mean-value method of predicting the dynamic
response of complex vibrations’’ proposed by Skudrzyk [11].
It has been established that there exists a reasonable correspondence between the absorption on

the surface of the baffle and the volume (bulk) absorption represented by the loss factor ðZÞ. In
this vein, it may be useful to cast the modulus of the reflection coefficient jRðoÞj in the form

jRðoÞj ) jRj ¼ exp½�ðrbÞ�, (19a)

where ðrbÞ is positive, is real and is assumed to be independent of ðoÞ. Thus, in Figs. 2–5 the value
of ðrbÞ is conditioned to be equal to ð10�3Þ, rendering jRj substantially equal to unity. The value of
rb ¼ ð10

�3Þ is the designated standard. The standard value of ðrbÞ is changed in a manner
reminiscent of the changes in ðZÞ depicted in Figs. 3–5. The changes in ðrbÞ are from the standard
value of ð10�3Þ to ð2p� 10�1Þ to (2) and, finally, to ðpÞ. The influence of these changes is depicted
in Figs. 6–8, respectively, with Fig. 2 serving, again, as the standard base. In Figs. 6–8 the volume
loss factor ðZÞ is maintained at the standard value of ð10�2Þ. Therefore, only at the higher
normalized frequency range, where o450, does the value of ðBoÞ approach unity. As explained in
Appendix A the contribution of BbðoÞ to the modal overlap parameter BðoÞ by the absorption at
the surface of the baffle is given by

BðoÞ ¼ BbðoÞ þ BoðoÞ; BbðoÞ ¼ ðrb=2pÞ; k ¼ o sinðyÞ ¼ 0. (17c)

The increases in ðrbÞ that are depicted in Figs. 6–8 are compared with the corresponding increases
in ðZÞ in Figs. 3–5, respectively. Figs. 6–8 and 3–5 show similar departures from Fig. 2. Moreover,
the features in Figs. 6–8 can be similarly interpreted in the light of Figs. 3–5 vis à vis Fig. 2.
Indeed, the absorption in the surface of the baffle are quite similar to the absorption in the body
of the fluid (fluid no. 2) in the cavity, not a surprising similarity to a noise control engineer. The
difference lies in that the influence of the loss factor in the function ½expfaðk;oÞg� is made
frequency dependent, whereas the reflection coefficient, as assumed here, is not. In particular,
from Eq. (7), and with the assistance of Appendix A, one finds

j expfaðk;oÞgj ¼ exp½�2ðoZÞðc1=c2ÞðbÞk2ðk;oÞ�,

k ¼ o sinðyÞ; 0pyoðp=2Þ, (19b)

where ðZÞ is assumed to be largely frequency independent and ðbÞ is the normalized separa-
tion between the plate and the baffle; i.e., ðbÞ is the normalized width of the cavity. Comparisons
between Figs. 6–8 and 3,4,5, respectively, reveal that differences in details exist. Although
the differences may be adequately interpreted by the material presented in Appendix A, dealing
with these differences, in addition to the above discussion, is, however, beyond the scope
of this paper.
4. Suppressing the resonances (and anti-resonances) by replacing summations by integrations

One learnt that the damping, including that contributed by the absorption in the surface of the
baffle, tends to converge the solid curves onto the dotted curves in Figs. 2–8. The convergence is
particularly complete in those ranges of the frequency for which the local modal overlap
parameters exceed unity. It is proposed that the action of converting summations over modes to
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Fig. 6. The same as Fig. 2 except that jRðoÞj is changed from the standard value of ½expð�10�3Þ�–½expð�2p� 10�1Þ�.
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integrations is equivalent to increasing the value of the modal overlap parameters in those
locations in the frequency domain in which the inherent value of the modal overlap parameters lie
below unity. By contrast, in those regions in the frequency domain in which the value of the local
modal overlap parameters exceed unity, converting summations to integrations is appropriate. In
these regions the integrations are commensurate with the summations over a continuous

distribution of modes [1,5]. The continuity, it is emphasized, is conditioned by the value of the
local modal overlap parameters that exceed unity; neither the value of the local (normalized)
modal densities alone nor the value of the local loss factors alone will suffice to ensure adequately
this continuity [2]. One may wonder how this should be interpreted. From Figs. 2–8 as just stated,
the absorption in the cavity tends to bring the solid curves to converge onto the dotted curves.
This convergence is completed when the absorption is high enough to be commensurate with the
removal of the cavity. This removal may be in the form of increasing ðbÞ to infinity which amounts
to gradually rendering the bottom fluid (fluid no. 2) semi-infinite. Recall that the top fluid (fluid
no. 1) is ab initio semi-infinite. When the increase is final, the solid curves are then coincident with
the dotted curves [8]. It is also observed in Figs. 2–8 that the excursions in the solid curves,
manifesting the resonances and the anti-resonances, diminish as the value of the local modal



ARTICLE IN PRESS

10

1

0.1

0.01

1x10-3

0.1 1 10 100

|T
bc

(k
(ω

),
 ω

)|
|T

c(
k(

ω
),

 ω
)|

. .
 . 

.

ω(a)

10

1

0.1

0.01

1x10-3

0.1 1 10 100

|T
b(

k(
ω

),
 ω

)|
|T

(k
(ω

),
 ω

)|
. .

 . 
.

ω(b)

10

1

0.1

0.01

1x10-3

0.1 1 10 100

|T
bc

_T
b(

k(
ω

),
 ω

)|
|T

c_
T

(k
(ω

),
 ω

)|
. .

 . 
.

ω(c)

Fig. 7. The same as Fig. 2 except that jRðoÞj is changed from the standard value of ½expð�10�3Þ�–½expð�2Þ�.
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overlap parameter BðoÞ increases toward unity and beyond, notwithstanding that the dotted
curves remain unchanged by these increases in BðoÞ. Indeed, it is observed in these figures that the
dotted curves serve as the geometrical mean to the positive excursions of the resonances with the
negative excursions of the adjacent anti-resonances. [It is to be recalled that resonances and anti-
resonances form adjacent pairs.] This geometrical mean then remains unchanged by (reasonable)
changes in the value of the local modal overlap parameter BðoÞ [12,13]. Thus, as far as this
geometrical mean is concerned, resonances and anti-resonances may be artificially added
andmodified to close the gaps between adjacent peaks and nadirs even in those frequency regions
where BðoÞ is less than unity. These insertions and modifications, which result in higher modal
densities and/or in higher loss factors, may effectively render BðoÞ in excess of unity in any desired
region in the frequency domain. This rendering a priori causes the solid curves to be coincident
with the dotted curves, thereby, indicating that in this region the resonances and that the anti-
resonances are indistinguishable and the transition along the normalized frequency axis is smooth.
It is this contrived smoothness that allows one to convert the thorny summations into
integrations. After all, the allowed artificial insertions and modifications of resonances and anti-
resonances render the modal distribution continuous. Conversely, when summations are
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Fig. 8. The same as Fig. 2 except that jRðoÞj is changed from the standard value of ½expð�10�3Þ�–½expð�pÞ�.

G. Maidanik et al. / Journal of Sound and Vibration 291 (2006) 323–348 337
converted to integrations, this artificial insertion and modification of resonances and anti-
resonances is implied a priori. Can this contention be illustrated by analysis and by computations?
To illustrate, one needs to revisit Eq. (7). The resonances and the anti-resonances are generated in
this equation by the factors that represent summations. These factors and their representation by
summations are

½1þ RðoÞ expfaðk;oÞg��1 ¼
X1
m¼0

½�RðoÞ expfaðk;oÞg�m, (20a)

½1� RðoÞ expfaðk;oÞg��1 ¼
X1
m¼0

½RðoÞ expfaðk;oÞg�m (20b)

½1þ ð�1ÞsRðoÞ expfa1ðk;oÞg��1 ¼
X1
m¼0

½ð�1Þsþ1 RðoÞ expfa1ðk;oÞg�m, ð20cÞ
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where one is reminded that ðsÞ is an index designating the pole nature of the external drives; e.g.,
s ¼ 0 designates monopole-like and s ¼ 1 designates dipole-like external drives. The conversion of
these summations to integrations yields

½1þ RðoÞ expfaðk;oÞg� ) 1, (21a)

½1� RðoÞ expfaðk;oÞg� ) 1, (21b)

½1þ ð�1ÞsR ðoÞ expfasðk;oÞg� ) 1, (21c)

respectively, where use is made of the identity

ln½X ðk;oÞ�
Z 1
0

½X ðk;oÞ�y dy ¼ 1. (22)

Substituting Eq. (21) in Eq. (7) renders Aðk;oÞ and Cðk;oÞ equal to unity. This substitution then
renders

Tbcðk;oÞ ) Tcðk;oÞ; Tbðk;oÞ ) Tðk;oÞ, (23)

respectively. Eq. (23) may be verified employing Eqs. (11) and (12) and Eqs. (10) and (15),
respectively. As contended, the conversion of the summations to the corresponding integrations,
indeed, suppresses the resonances and anti-resonances in the transfer functions of concern. Again,
examining Eq. (21) reveals that this suppression is commensurate with assigning a total
absorption at the baffle, which renders jRðoÞj ) 0. This condition, in turn, is commensurate with
the removal of the cavity. The conditions that are obeyed in Fig. 2 are augmented by Eq. (21) and
the moduli of the transfer functions jTbcðk;oÞj; jTbðk;oÞj, jTcðk;oÞj and jTðk;oÞj, are computed.
The results of these computations are depicted in Fig. 9. The solid curves in Fig. 9 are those in
Fig. 2 except that the summations are converted to the corresponding integrations as prescribed in
Eqs. (20) and (21). A comparison of Fig. 9 with Fig. 2 would rest the contention made in this
section, if not in the paper as a whole. Nonetheless for the record, it may be useful to restate the
contention in bolder terms. Eqs. (1), (7), (20) and (21), in unison, declare that the transfer
functions, when summations are converted to corresponding integrations, become independent of
the effective loss factor ðZeÞ. This loss factor describes the sum of both volume and surface
absorptions in the cavity; Ze ¼ ðZb þ ZÞ. This independence, it is argued, allows one to assume that
ðZeÞ may be set as small as one wishes, without changing the transfer functions [1–6]. Setting ðZeÞ

small, without invoking a proper criterion to computing Fig. 9, may be misleading, as Fig. 10
attests. Fig. 10 repeats Fig. 2 except that, whereas ðrbÞ remains equal to ð10�3Þ, ðZÞ is changed from
the standard value ð10�2Þ in Fig. 2 to ð10�4Þ in Fig. 10. The ratio of the effective loss factor ðZeÞ10
in Fig. 10 to the effective loss factor ðZeÞ2 in Fig. 2 is then

½ðZeÞ10=ðZeÞ2� ¼ ½ð5=pÞ þ o�½ð5=pÞ þ 102o��151; 0:1ooo102. (17d)

Under the criterion for converting the summations to integrations, Fig. 9 is common to Figs. 10
and 2 [7]. Yet, Fig. 9 does not only hide the presence of resonances and anti-resonances in Fig. 2,
but it hides the differences between Figs. 2 and 10. These differences are accounted for by
Eq. (17d). What would Fig. 9 hide were one tempted to render the effective loss factor ðZeÞ

vanishingly small [9,10]?
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Fig. 9. The same as Fig. 2 except that the conditions are augmented by those stated in Eq. (21). These augmented
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Finally, both the resonances and anti-resonances are prominently present in the foregoing
considerations. In most practical situations, even when the resonances are clearly distinguishable,
the anti-resonances are usually obscured by noise. Thus, the peaks in the resonances may be
visible and identified, but the nadirs in the anti-resonances are hidden within the noise. The
geometrical averaging is, therefore, not readily implemented. The averaging that is usually
implemented under these circumstances tends to rise above the geometrical average. As is argued,
a noise control measure; e.g., increase in damping, will tend to bring the response, as expressed for
example by the transfer function considered here, toward the geometrical mean à la Skudrzyk [11].
In practice, the increase in damping also will cause an increase in the levels of the nadirs of the
anti-resonances. This detriment, however, is obscured by the noise (What the eye does not see, the
heart does not grieve!). The merit of the damping, in the initial stages of increasing it may thereby
be exaggerated. Nonetheless, once the geometrical mean-level has been reached, further increases in

damping, that will render the modal overlap parameter to exceed unity, would be of no practical
benefit. The resonances and the anti-resonances can hardly reverse their roles and a beneficial
saturation will prevail.
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Fig. 10. The same as Fig. 2 except that ðZÞ is changed from the standard value of ð10�2Þ–ð10�4Þ.
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Appendix A

The contributions to the modal overlap parameter by the absorption in the surface of the baffle
and in the volume of the cavity.
In order to carry out a number of computations it becomes necessary to state more explicitly

the parameters that define the dynamic system. Of particular significance are the analytical forms
for the normalized modal densities and the loss factors. Through these parameters, the analytical
expressions for the modal overlap parameters may then be derived. In this vein, the normalized
modal density nðoÞ of the resonances (and of the anti-resonances) in the dynamic system here
considered may be simply ascertained. [The modal density is the inverse of the frequency
separation ðDoÞ between adjacent resonances. The normalized modal density pertains to the
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normalized frequency separation.] For this purpose the reflection coefficient ðRÞ is cast in the form

RðoÞ ¼ exp½�rbðoÞ � irI ðoÞ� (A.1)

with ðrbÞ and ðrI Þ real parameters. Recalling Eq. (7) the local (normalized) modal density nðoÞ
assumes, by definition, the expression

½2pnðoÞ � fqrI ðoÞ=qog� ¼ Ab; k ¼ kðoÞoo,

Ab ¼ 2ðc1=c2ÞðbÞ½k2ðk;oÞ�, (A.2)

where it is assumed that the normalized width ðbÞ of the cavity is independent of the normalized
frequency ðoÞ and the normalized wavenumber ðkÞ is restricted to the supersonic range; in this
case k2ðk;oÞ ) k2½o sin y;o�. Again the angle ðyÞ is the direction, off the normal to the plane of
the plate, of radiation into the top fluid (fluid no. 1) by the emerging supersonic component on the
interface with that top fluid. Similarly, an equivalent volume (or bulk) loss factor may be defined to
account for the absorption in the surface of the baffle. This local loss factor is designated ðZbÞ and
the expression for it is

ðoZbÞ ¼ ½rbðoÞ=Ab�; k ¼ kðoÞoo. (A.3)
10

1

0.1

0.01

1x10-3

0.1 1 10 100

|T
bc

(k
(ω

),
 ω

)|
|T

c(
k(

ω
),

 ω
)|

. .
 . 

.

ω(a)

10

1

0.1

0.01

1x10-3

0.1 1 10 100

|T
b(

k(
ω

),
 ω

)|
|T

(k
(ω

),
 ω

)|
. .

 . 
.

ω(b)

10

1

0.1

0.01

1x10-3

0.1 1 10 100

|T
bc

_T
b(

k(
ω

),
 ω

)|
|T

c_
T

(k
(ω

),
 ω

)|
. .

 . 
.

ω(c)

Fig. B1. The same as Fig. 2 except that the standard dipole-like external drive with s ¼ 1, is changed to monopole-like

with s ¼ 0.
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Fig. B2. The same as Fig. 3 except that the standard dipole-like external drive with s ¼ 1, is changed to monopole-like

with s ¼ 0 [cf. Fig. 2].
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In this connection, ðZÞ is the volume (or bulk) loss factor in the cavity. The local modal overlap
parameter BðoÞ, in the cavity here considered, may then be determined in the two-components
form

B ¼ Bb þ Bo; Bb ¼ ðoZbÞnðoÞ; Bo ¼ ðoZÞnðoÞ (A.4)

[cf. Eq. (17)]. Substituting Eqs. (A.2)–(A.4) in the factor ½RðoÞ expfaðk;oÞg� in Eq. (7), one may
show that the absolute value of this factor may be cast in the form

jRðoÞ expfaðk;oÞgj ¼ exp½�foZeðoÞgAb�,

ZeðoÞ ¼ ZbðoÞ þ ZðoÞ, (A.5)

where ZeðoÞ is the effective loss factor in the cavity [cf. Eq. (17a)]. Merely for the sake of simplicity
and convenience ðrI Þ, ðrbÞ and ðZÞ are assumed to be independent of ðoÞ. It is further decreed that
the computations are to be carried out for components for which

k ¼ o sinðyÞ; k2ðk;oÞ ¼ k2½o sinðyÞ;o� (A.6a)
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Fig. B3. The same as Fig. 2 except that the value of ðb1Þ is changed from the standard value of zero to ðb1Þ ¼ 0:2 ðbÞ.
Again, note that ðbÞ and ðb1Þ are normalized quantities.
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and if c1 ¼ c2 then

k2 ðk;oÞ ¼ k2 ¼ cosðyÞ, (A.6b)

and, therefore, ðk2Þ is independent of the normalized frequency ðoÞ and the angle ðyÞ is the
directional designation of a (supersonic) component on the interface with the top fluid (fluid no.
1). Imposing Eqs. (A.6b) on Eq. (A.5) reduces this equation to read

jRðk;oÞ expfaðk;oÞgj ) exp½�frb þ ðoZÞAbg�,

Ab ) 2½ðbÞ cosðyÞ� (A.7)

and then one finds that

ðoZbÞ ¼ ðrb=2Þ½b cosðyÞ��1; n ¼ ðpÞ�1½b cosðyÞ�,

Bb ¼ ðrb=2pÞ; Bo ¼ ðoZÞðpÞ
�1
½b cosðyÞ�. (A.8)
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Fig. B4. The same as Fig. 3 except that the value of ðb1Þ is changed from the standard value of zero to ðb1Þ ¼ 0:2ðbÞ [cf.
B3].
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Appendix B

Variations in the propagation and the separation distance in the cavity as well as in the nature
of the external drive.
A number of computational variations on the theme depicted in the text are exemplified. The

purpose of this appendix is to show the versatility of the computational breadth of the analysis.
However, this analysis is used here exclusively toward the arguments that lie within the scope
chosen for this paper. The analysis and the model employed could, in the future, serve a wider and
a more extended scope. In this vein, in Fig. B1, Fig. 2 is repeated except that the external drives
are changed from the standard dipole-like with s ¼ 1, to a monopole-like, with s ¼ 0 [cf. Eq. (7b)].
The influence of this change can be observed in comparing Fig. 2 with Fig. B1. There is a
difference not only in the dispositions of the resonances and anti-resonances but also in their
excursions at the higher frequency ranges. Indeed, they converge more slowly on to the
geometrical mean with an increase in frequency than when s ¼ 0. However, the difference is
insignificant to the arguments conducted in this paper. To emphasize this point Fig. B2 is shown.
In this figure, Fig. 3 is repeated with s ¼ 0. The relationship between Figs. B1 and B2 are similar
to those between Figs. 2 and 3. On the same theme Fig. B3 is offered. The external drives which
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are placed in Fig. 2 on the standard plane at ðb1Þ equal to zero, are now placed at ðb1Þ ¼ 0:2b.
Again, there is a difference between Figs. 2 and B3 that is similar, in certain aspects, to the
difference between Figs. 2 and B1. This difference is also insignificant to the arguments conducted
in this paper. This point is further emphasized in Fig. B4. In this figure, Fig. 3 is repeated except
that the conditions that b1 ¼ 0 is replaced by b1 ¼ 0:2b. Again, the relationship between Figs. 2
and 3 are similar to those between Figs. B3 and B4.
Another variation on the theme deals with a change in the normalized wavenumber ðkÞ from the

standard value of zero in Fig. 2 to the value of ðo
ffiffiffi
3
p

=2Þ in Fig. B5. The latter value of ðkÞ defines
the components on the interface with the top fluid (fluid no. 1) that are destined to radiate into an
angle ðyÞ of ð60�Þ to the normal to the plane of the plate. The normalized critical frequency ðocÞ,
which now plays a role, is set at the standard value of ten (10) in both figures. [cf. The expression
for the normalized surface impedance of the plate stated in Eq. (9)]. The influence of the plate
switching from a mass control to a stiffness control surface impedance, within the range of ðoÞ
depicted in the figures, is clearly visible in Fig. B5. In Fig. 2 that switch never occurs. Once again,
this feature in the transfer function is of little significance to the arguments pursued in this paper.
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Fig. B5. The same as Fig. 2 except that the value of ðkÞ is changed from the standard value of zero to ðo
ffiffiffi
3
p

=2Þ. Note

that ðkÞ is a normalized quantity.
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It is deduced from Eq. (17a) that the modal overlap parameter BeðoÞ is dependent on the
product of the effective loss factor ZeðoÞ and the modal density nðoÞ. Increases in BeðoÞ can thus
be induced by increases in either ZeðoÞ;nðoÞ or both. This property of the modal overlap
parameter is central to the discussion initiating Section 4. In preceding figures changes in BeðoÞ
are introduced by changes in ZeðoÞ only. In Fig. B6 a change in the modal overlap parameter is
introduced also by a change in the modal density. In this figure the normalized width ðbÞ of the
cavity is rendered dependent on the normalized frequency ðoÞ. Instead of the standard value of
ðbÞ ¼ p in Fig. 2, ðbÞ is changed to the value of ð2p=

ffiffiffiffi
o
p
Þ in Fig. B6 and, in particular, the speeds in

the fluids remain equal; c1 ¼ C2. Clearly, Fig. 2 differs from Fig. B6 in that the modal density of
the resonances (and of the anti-resonances) is changed from that of

nðoÞ ¼ ðk2Þ � ½cosðyÞ�; ðbÞ ¼ p (B.1a)

in Fig. 2 to that of

nðoÞ ¼ ½cosðyÞ�ðoÞ�ð1=2Þ; ðbÞ ¼ 2pðoÞ�ð1=2Þ (B.1b)
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Fig. B6. The same as Fig. 2 except that the value of ðbÞ is changed from the standard value of ðpÞ to ð2p=
ffiffiffiffi
o
p
Þ. [cf. Note

that ðbÞ and ðoÞ are normalized quantities and that in this figure ðbÞ is made dependent on the normalized frequency.]
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in Fig. B6. Similarly, in Fig. 2 the modal overlap parameters ðBbÞ and ðBoÞ are

Bb ¼ ðrb=2pÞ; Bo ¼ ðoZÞ½cosðyÞ�, (B.2)

respectively [cf. Eq. (A.8)]. In Fig. B6 these parameters change to read

Bb ¼ ½ðrb=2pÞð1=2Þ�; Bo ¼ ½ðoÞ
1=2Z�½cosðyÞ�, (B.3)

respectively. Since ðrbÞ is small; rb ¼ 10�3, in both, Figs. 2 and B6, ðBbÞ plays a minor role in these
figures. Then only the change in ðBoÞ is significant; in Fig. 2 ðBoÞ is proportional to the normalized
frequency ðoÞ and in Fig. B6 ðBoÞ is proportional to the square root of the normalized frequency
ðoÞ1=2. Thus, BoðoÞ is lower in the higher frequency range in Fig. B6 than in Fig. 2. This difference
is significant to the arguments conducted in this paper. Nonetheless, Fig. B6 is relegated to this
appendix because of its physical artificiality. Of course, the bottom fluid could be made to possess
a sound speed that is dispersive; e.g., c2 ¼ a

ffiffiffiffi
o
p

with a a constant, but, then, too many
modifications to the formalism would be required. And that too lies outside the scope of this
paper.
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Fig. B7. The same as Fig. 9 except that the value of ðkÞ is changed from the standard value of zero to ðo
ffiffiffi
3
p

=2Þ [cf.
Fig. B5].
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Last, but not least, one may wonder whether the replacement of summations by integrations
can handle a change in the external sources. In Fig. 9, s ¼ 1. A change in ðsÞ from one (1) to zero
(0) has been made and Fig. 9 emerged in this computation. It would be superfluous to show the
result of this computation under a separate cover. And just to be clever, Fig. 9 is repeated in
Fig. B7 except that the conditions on ðkÞ are made to fit that used in Fig. B5; i.e., ðkÞ is changed
from zero to ðo

ffiffiffi
3
p

=2Þ. The change in the surface impedance of the plate is clearly visible in
Fig. B7 as it is in Fig. B5.
Incidentally, it may be prudent to note that the influence of the coating remains intact to

changes in ðsÞ and in ðb1Þ. This is made clear by comparing the solid curve in Fig. 2c with the solid
curves in Figs. B1(c) and B3(c) and the solid curve in Fig. 3c with the solid curves in Figs. B2(c)
and B4(c), respectively.
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